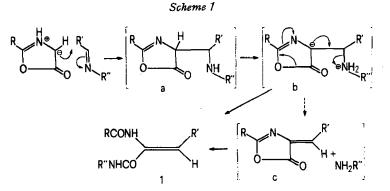
REFERENCES

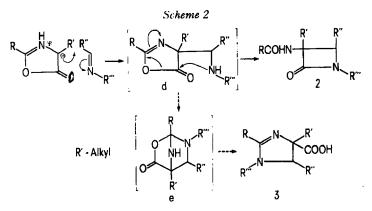
- [1] J.C. Vederas, W. Graf, L. David & Ch. Tamm, Helv. 58, 1886 (1975).
- [2] M. Binder, J. R. Kiechel & Ch. Tamm, Helv. 53, 1797 (1970).
- [3] W. Graf, J.L. Robert, J.C. Vederas, Ch. Tamm, P.H. Solomon, I. Miura & K. Nakanishi, Helv. 57, 1801 (1974).
- [4] M. Binder & Ch. Tamm, Helv. 56, 966 (1973).
- [5] M. Binder & Ch. Tamm, Helv. 56, 2387 (1973).
- [6] cf. M. Binder & Ch. Tamm, Angew. Chem. 85, 369 (1973), Internat. Ed. 12, 370 (1973).
- [7] D.C. Aldridge & W.B. Turner, J. chem. Soc. 1969 (C), 923.
- [8] R. J. White, E. Martinelli, G.G. Gallo, G. Lancini & P. Beynon, Nature 243, 273 (1973); R. J. White, E. Martinelli & G. Lancini, Proc. Nat. Acad. Sci. (USA) 71, 3260 (1974).
- [9] cf. W. Charney & H.L. Herzog, 'Microbial Transformation of Steroids', a Handbook, Academic Press, New York and London 1967.
- [10] G. Büchi, Y. Kitaura, S.S. Yuan, E. Wright, J. Clardy, A.L. Demain, T.G.N. Hunt & G.N. Wogan, J. Amer. chem. Soc. 95, 5423 (1973); D.C. Aldridge, D. Greatbanks & W.B. Turner, Chem. Commun. 1973, 551.

270. A New Synthesis of β -Lactams


by Kapa K. Prasad and Theodor Petrzilka¹)

Organisch-chemisches Laboratorium der Eidg. Technischen Hochschule Zürich

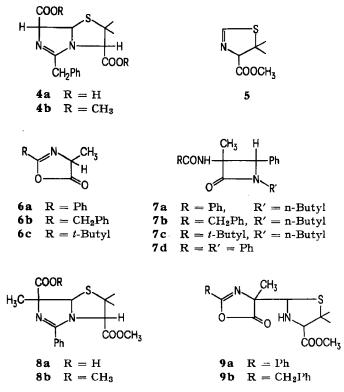
(23. IX. 75)


Zusammenfassung. Es wird eine neue Synthese von β -Lactamen durch Umsatz von 4-Alkylazlactonen mit acyclischen Iminen beschrieben. Mit einem cyclischen Imin wird dagegen ein Imidazolin-Derivat erhalten.

The reaction of oxazolin-5-ones with different imines is reported in the literature [1-3]. In all cases the products obtained are derived from an initial nucleophilic attack of oxazolone on the imine (*Scheme 1*), and are of type 1.

During our work on β -lactam antibiotics, we got interested in the above scheme as we have visualized the possibility of obtaining β -lactams by substituting one of the hydrogen atoms at C(4) of oxazolone by an alkyl group. The intermediate **d** (*Scheme 2*) generated by the initial attack of the oxazolone on an imine, can now lead to an azetidinone **2** and/or an imidazoline derivative **3** as shown in *Scheme 2*. The imidazoline derivative is of interest because of its close relationship to penillic acid (**4a**),

¹⁾ Author, to whom correspondence must be addressed.


which is formed by the rearrangement of penicillin through a similar intermediate as d [4].

In our present studies we obtained azetidinones of type 2 with acyclic imines, and an imidazoline derivative of type 3 with the cyclic imine 5 derived from penicillin.

The reaction of 2-phenyl-4-methyl-2-oxazolin-5-one (**6a**) with N-benzylidenebutylamine in refluxing benzene gave compound **7a** [m.p. 145°; analyzed for C₂₁H₂₄-N₂O₂; MS. (*m/e*): 336 (*M*⁺); IR.: 1745 (lactam CO) [5], 1670 (amide CO) and 3430 (NH) cm⁻¹; NMR.: 0.92 (3H, *t*, J = 7); 1.18 (3H, *s*); 1.20–1.80 (4H, *m*); 3.24 (1H, *m*); 3.64 (1H, m); 5.14 (1H, *s*); 6.11 (1H, br.); 7.28–7.58 (8H, *m*); 7.84 (2.H, *m*) ppm. These data are in agreement with the azetidinone formulation **7a**]. Similarly 2-benzyl-4-methyl-2-oxazolin-5-one (**6b**) and 2-*t*-butyl-4-methyl-2-oxazolin-5-one (**6c**) gave the corresponding azetidinones with N-benzylidene-butylamine. The spectral data agree with structures **7b** and **7c**. One common characteristic feature of compounds **7a–c** is that the 2 protons of *n*-butyl in α -position to the ring nitrogen atom appear as anisochronous in the NMR. spectra giving an ABX_2 type pattern ($J_{AB} =$ 14 Hz, $J_{AX} = 7$ Hz) by coupling with the adjacent methylene protons. Similar observations were made on N-benzylic β -lactams [6].

The reaction of oxazolone 6a with N-benzylidene-aniline in refluxing toluene yielded the azetidinone 7d. Compounds 7a-d fragment upon electron impact (see Exper. Part) in the pathways established for azetidinones [7], which is additional evidence for the proposed structures.

The reaction of oxazolone **6a** with a cyclic imine, *i.e.* methyl D-5,5-dimethyl-2thiazoline-4-carboxylate (5) in refluxing benzene yielded the crystalline compound **8a** [m.p. 216°; MS. (m/e); 348 (M^+) ; IR.: 1750, 1620 cm⁻¹; NMR.: 1.36 (3H, s); 1.44 (3H, s); 1.77 (3H, s); 3.86 (3H, s); 4.36 (1H, s); 5.78 (1H, s); 7.40–7.72 (6H, m) ppm]. From the above data it is quite evident that the type of product obtained in this case is different from the ones obtained from acyclic imines, *e.g.* the usual absorptions for secondary amides (3430 and 1670 cm⁻¹) are absent in the IR. spectrum, and the mass spectrum shows the loss of COOH and CO₂ fragments from the molecular ion. On treatment with diazomethane **8a** gave a methyl derivative **8b** [m.p. 115°; MS. (m/e): 362 (M^+) ; IR.: 1745 and 1625 cm⁻¹; NMR. spectrum shows an additional three proton singlet (3.79 or 3.80 ppm) accounting for a new carbomethoxy group, apart from the other signals of the parent compound]. Based on the above evidence a penillic acid structure **8a** is proposed for this compound. Its IR. absorption at 1620 cm⁻¹ agrees well with the imidazoline system [8]. The UV. spectra of 8a and 8b correspond to those recorded for benzyl-penillic acid 4a and its derivative 4b [9].

Bell et al. [10] had assigned an oxazolone-thiazolidine structure **9b** to the reaction product of oxazolone **6b** and thiazoline **5**. However, in our case, the corresponding structure **9a** can be ruled out on the basis of spectral and chemical evidence: (a) the product from **6a** and **5** does not show the normal IR. absorptions of oxazolones (1820 and 1670 cm⁻¹); one could assume a hydrogen bridge between the NH and the lactone carbonyl in structure **9a** in order to explain the shift of the 1820 band to 1750 cm⁻¹, but the absence of the 1670 cm⁻¹ band is difficult to account for; (b) the ortho-protons of the phenyl group in **6a** appear at 7.96 ppm whereas in compound **8a** all aromatic protons occur as a multiplet at 7.40–7.72 ppm; (c) the methyl derivative **8b** shows a three proton singlet at 3.79 or 3.80 ppm, in accordance with the presence of a COOCH₃ rather than a N–CH₃ group. As expected there are no changes in the **6** μ region of the IR. spectrum compared to the absorptions of **8a**; (d) the product of **6a** and **5** is stable to refluxing methanol, while normally 2-oxazoline-5-ones undergo methanolysis under such conditions. On the basis of the above evidence we prefer structure **8a** for the product of **6a** and **5**.

The formation of azetidinones and imidazolines in the reaction of oxazolones with imines may proceed from a common intermediate of type d (Scheme 2); this assumption is supported by a recent observation of Okutome et al. [11], who demontrated the formation of an 3-acyl-2-(oxazol-2-in-5-on-4-yl)-thiazolidine compounds in the reaction of N-acyl- α -aminoacids which is transformed in an oxazolinon under the reaction conditions) with 2-substituted thiazolines in the presence of acetic anhydride.

Experimental Part

All melting points were taken in a *Tottoli* melting-point apparatus and are uncorrected. IR. spectra (bands in cm⁻¹) were determined in chloroform on a *Perkin Elmer* 125. Mass spectra were taken with a *Hitachi* RMU 6 A, operating with an ionization energy of 70 eV, the temperature of the ion source was about 200°. NMR. spectra were taken in deuteriochloroform on a Varian 4 A 100 using TMS as internal reference. Chemical shifts are given in δ (ppm) and the coupling constants in Hz. The UV. spectra were recorded on a *Perkin Elmer* 137. Preparative TLC. was carried out on pre-coated silica gel plates F 254 (*Merck*) and Rf values were determined on 60 F 254 (*Merck*) using chloroform methanol 9:1 as developping solvent system.

General procedure for the preparation of oxalones [12]. – N-acyl- α -amino acid (0,01 mol) and acetic anhydride (10 ml) are heated on a boiling water bath for 20 min, the excess acetic anhydride is removed in vacuum and the residue yields on distillation at 80–100°/0,01 Torr the colourless oily oxazolone (80–90%).

In case of oxazolone 6c this procedure is slightly modified. After the lactonization the volatiles are removed in vacuum. The residue is analytically pure and was used directly in subsequent reactions.

Spectral data of oxazolones – 2-Phenyl-4-methyl-2-oxazolin-5-one (**6a**). IR.: 1820, 1670. – NMR.: 1.61 (3H, d, J = 7); 4.46 (1H, q, J = 7); 7.50 (3H, m); 7.96 (2H, m). – MS. (m/e (%)): 175 (9, M^+), 147 (7), 131 (31), 105 (100), 77 (55).

2-Benzyl-4-methyl-2-oxazolin-5-one (**6b**). – IR.: 1830, 1675. – NMR.: 1.48 (3H, d, J = 7); 3.80 (2H, d, J = 1.5; on irradiation at 4.21 the d collapsed into a s); 4.21 (1H, $t \times q$, $J_{\text{H,CH3}} = 7$, $J_{\text{H,CH3}} = 1.5$; on irradiation at 3.80 it became a clean q); 7.32 (5H, s). – MS. (m/e (%)): 189 (39, M^+), 161 (2), 146 (3), 145 (4), 136 (2), 119 (7), 118 (8), 92 (22), 91 (100).

2-t-Butyl-4-methyl-2-oxazolin-5-one (6c). – IR.: 1825, 1670. – NMR.: 1.33 (9H, s); 1.46 (3H, d, J = 7); 4.03 (1H, q, J = 7). – MS. (m/e (%)): 155 (10, M+), 140 (5), 127 (7), 112 (11), 111 (22), 96 (16), 85 (13), 84 (8), 69 (13), 57 (100), 55 (43).

Reaction of oxazolones with imines – 1-Butyl-3-benzoylamino-3-methyl-4-phenyl-2azetidinone (7a). 175 mg (1 mmol) of oxazolone 6a and 161 mg of N-benzylidene-butylamine [13] are dissolved in 5 ml of dry benzene and the mixture is refluxed for 2 h. After the removal of volatiles the residue is separated on preparative TLC. using silica gel as adsorbent and chloroform/ methanol as eluent. Compound 7a is isolated as the main product (others are uncharacterised): 167 mg (50%), m.p. 145°, Rf = 0.62. – UV. ($\lambda_{max}^{EtOH}(\varepsilon)$): 207 (25020), 224 (19650) nm. – IR.: 3430, 1745, 1675. – NMR.: 0.92 (3 H, t, J = 7); 1.18 (3 H, s); 1.20–1.80 (4 H, m); 3.24 (1 H, m, J_{gem} = 14, J_{vie} = 7); 3.64 (1 H, m, J_{gem} = 14, J_{vie} = 7); 5.14 (1 H, s); 6.11 (1 H, br.); 7.28– 7.58 (8 H, m); 7.84 (2 H, m). – MS. (m/e (%)): 336 (1, M+), 238 (6), 237 (30), 215 (13), 175 (14), 163 (13), 162 (100), 105 (70), 77 (28).

 $C_{21}H_{24}N_2O_2 (336.42): Calc. C 74.97 H 7.19 N 8.33\% Found C 74.69 H 7.10 N 8.36\%$

1-Butyl-3-methyl-3-phenacetylamino-4-phenyl-2-azetidinone (7b). 189 mg (1 mmol) of oxazolone 6b and 161 mg (1 mmol) of N-benzylidene-butylamine are treated as above: 140 mg (40%) 7b, m.p. 142°, Rf = 0.57. - UV. ($\lambda_{max}^{EtOH}(\varepsilon)$): 207 (25380), 219 (16600) nm. - IR.: 3420, 1755, 1675. -NMR.: 0.90 (3H, t, J = 7); 0.96 (3H, s); 1.20-1.80 (4H, m); 3.00 (1H, m, $J_{gem} = 14, J_{vic} = 7$); 3.60 (1H, m, $J_{gem} = 14, J_{vic} = 7$); 3.64 (2H, s); 5.00 (1H, s); 6.00 (1H, br.); 7.32 (10H, s). -MS. (m/e (%)): 350 (2, M+), 322 (2), 251 (34), 215 (26), 189 (13), 162 (100), 133 (34), 91 (35).

 $C_{22}H_{26}N_2O_2$ (350.44): Calc. C 75,40 H 7,48 N 7,99% Found C 74,85 H 7,71 N 7,45%

1-Butyl-3-methyl-4-phenyl-3-pivaloylamino-2-azetidinone (7 c). 155 mg (1 mmol) of oxazolone **6c** and 161 mg (1 mmol) of N-benzylidene-butylamine are dissolved in 10 ml of dry benzene and refluxed for 3 h. Working-up as above gives an oily compound 7c: 110 mg (35%), Rf = 0.62. – UV. $(\lambda_{max}^{\text{EtOH}}(\varepsilon)): 206 (14720), 220 (9365) \text{ nm. - IR.: } 3440, 1750, 1675. - NMR.: 0.90 (3H,$ *t*,*J*= 7); 1.04 (3H,*s*); 1.20-1.80 (4H,*m*); 1.26 (9H,*s*); 3.04 (1H,*m*,*J_{gem} = 14*,*J_{vie} = 7*); 3.60 (1H,*m*,

 $J_{gem} = 14$, $J_{vic} = 7$; 4.92 (1 H, s); 6.06 (1 H, br.); 7.36 (5 H, s). - MS. (m/e (%)): 316 (0.5, M+), 231 (2), 217 (17), 215 (10), 163 (13), 162 (100), 155 (12), 85 (9), 57 (47).

 $C_{19}H_{28}N_2O_2$ (316.43): Calc. C 72.11 H 8.92 N 8.85% Found C 71.85 H 9.01 N 8.75% *3-(Benzoylamino)-1,4-diphenyl-3-methyl-2-azetidinone* (7d). 175 mg (mmol) of oxazolone 52 and 181 mg (1mmol) of N-benzylidene-aniline [14] are dissolved in dry toluene and the mixture is refluxed for 5 h. Working-up in the usual way gives compound 7d: 0.106 g (30%), Rf = 0.67. – UV. ($\lambda_{max}^{\text{EtOH}}(\varepsilon)$): 204 (47890), 249 (26330) nm. – IR.: 3430, 1750, 1675. – NMR.: 1.26 (3H, s); 5.58 (1H, s); 6.72 (1H, br.); 7.20–7.54 (13H, m); 7.84 (2H, m). – MS. (m/e (%)): 356 (0.5, M⁺), 328 (0.5), 310 (9), 237 (6), 235 (3), 182 (100), 175 (6), 105 (48), 77 (33).

 $C_{23}H_{20}N_2O_2$ (356.41): Calc. C 77.50 H 5.66 N 7.86% Found C 77.45 H 5.60 N 7.80% *3-Methoxycarbonyl-4-phenyl-2,2,6-trimethyl-6-(2,3,6,6a-tetrahydroimidazo*[5,1-b]*thiazoloic)acid* (8a). 175 mg (1 mmol) of the oxazolone 6a and 173 mg (1 mmol) of methyl D-5,5-dimethyl-2thiazoline-4-carboxylate (5) [15] are dissolved in 5 ml of dry benzene and the reaction mixture is refluxed for 8 h; during this period a colourless crystalline solid separates from the mixture. After completion of the reaction the crystalline residue, which is pure compound 8a, is collected by filtration (344 mg (98%)), and recrystallized from chloroform/benzene, m.p. 216°, Rf = 0.18. – UV. ($\lambda_{max}^{\rm EtOH}(\varepsilon)$): 208 (17280), 232 (12030). – IR.: 1750, 1620. – NMR.: 1.36 (3H, s); 1.44 (3H, s); 1.77 (3H, s); 3.86 (3H, s); 4.36 (1H, s); 5.78 (1H, s); 7.40–7.72 (6H, m). – MS. (m/e (%)): 348 (7, M⁺), 304 (12), 303 (18), 271 (6), 230 (14), 229 (16), 176 (8), 175 (27), 174 (100), 171 (13), 158 (15).

Methyl 3-methoxycarbonyl-5-phenyl-2, 2, 7-trimethyl-7-(2, 3, 7, 7 a-tetrahydroimidazo-[5, 1-b]-ihiazoloate (8b). 174 mg (0.5 mmol) of compound 8a is dissolved in ether/methanol and diazomethane added until the persistence of the yellow colour; the solvent is evaporated and the residue chromatographed on silica gel with chloroform as eluent giving compound 8b: 108 mg (60%), recrystallization from ether/hexane, m.p. 115°, Rf = 0.64. – UV. ($\lambda_{max}^{EtOH}(\varepsilon)$): 205 (15910), 228 (13980) nm. – IR.: 1745, 1625. – NMR.: 1.28 (3H, s); 1.34 (3H, s); 1.68 (3H, s); 3.79 (3H, s); 3.80 (3H, s); 4.37 (1H, s); 5.70 (1H, s); 7.36–7.70 (5H, m). – MS. (m/e (%)): 362 (17, M⁺), 303 (44), 189 (100), 161 (38), 146 (15), 126 (12), 120 (36), 105 (74).

 $C_{18}H_{22}N_2O_4S_1$ (362.37): Calc. C 59.66 H 6.12 N 7.73 S 8.85%

Found C 59.46 H 6.16 N 7.76 S 9.02%

One of us (K.K.P.) gratefully acknowledges support of this work by the Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung.

REFERENCES

- [1] C.W. Bird, Tetrahedron Letters 1964, 609.
- [2] A.B.A. Jansen & R. Robinson, Mh. Chem. 98, 1017 (1967).
- [3] D.C. Cook & A. Lawson, J. chem. Soc. Perkin I, 1973, 465.
- [4] R. B. Woodward in 'The chemistry of Penicillin', H. T. Clarke, J. R. Johnson & R. Robinson, Ed., Princeton University Press, Princeton, N. J. 1949, p. 445.
- [5] E. Funke & R. Huisgen, Chem. Ber. 104, 3222 (1971).
- [6] K.D. Barrow & T.M. Spotswood, Tetrahedron Letters 1965, 3325.
- [7] P.V. Demarco & R. Nagarajan, 'Cephalosporins & Penicillins', E.H. Flyin Ed. 1972, p. 320.
- [8] A.R. Katrithky, 'Physical methods in Heterocyclic Chemistry', Vol. IV, p. 306, 1971.
- [9] A. H. Cook, ref. [4], p. 128.
- [10] M. R. Bell, S. D. Clemans, R. Oesterlin & J.A. Carlson, Abstracts, 23rd International Congress of Pure & Applied Chemistry, Boston, Mass., p. 74, July 1971.
- [11] T. Okutome, Y. Sakurai, M. Kurumi, H. Kawamura, S. Sato & K. Yamaguchi, Chem. pharm. Bull. 23, 48 (1975).
- [12] E. Mohr & F. Strochein, Ber. deutsch. chem. Ges. 42, 2521 (1909).
- [13] C. W. C. Stein & A. R. Day, J. Amer. chem. Soc. 64, 2569 (1942).
- [14] S. R. Sandler & W. Karo, Organic functional group preparations, vol. II (Organic Chemistry vol. 12/II), 255 (1971).
- [15] M. R. Bell, J. A. Carlson & R. Oesterlin, J. org. Chemistry 37, 2733 (1972).